
17. W A V E  O P T I C S

1. INTRODUCTION 

There have always been controversies over the nature of light. Some theories believe light to be a wave whereas 
some believe it to be a particle. Newton, the greatest among the great, believed that light is a collection of particles. 
He believed that these particles travel from a source of light in straight lines when it is not under the influence of 
external forces. This was one of the strongest evidence of the particle nature of light. 

A Dutch physicist named Huygens (1629 – 1695), suggested that light may have a wave nature. The apparent 
rectilinear propagation of light explained by Newton may be just due to the fact that the wavelength of light may 
be much smaller than the dimensions of these obstacles. This proposal remained a dump for almost a century. 
Newton’s theory was then challenged by the Young’s double slit experiment in 1801. A series of experiments on 
diffraction of light conducted by French scientist Fresnel were some of the activities that put an end to the particle 
nature of light and established the wave nature of light. 

The twist came around when the wave nature of light failed to explain the photoelectric effect in which light again 
behaved as particles. This again brought up the question whether light had a wave or a particle nature and an 
acceptance was eventually reached that light is of dual nature – particle and wave. In this material, we will focus on 
the study of the wave nature of light. 

Key point – Light waves need no material medium to travel. They can propagate in vacuum.

1.1 Nature of Light Waves
Light waves are transverse, i.e. disturbance of the medium is perpendicular to the direction of propagation of the 
wave. Hence they can be polarized. If a plane light wave is travelling in the x-direction, the electric field may be 
along the y or z direction or any other direction in y-z plane. The equation of such a monochromatic light wave can 
be written as ( )0E E sin t x v= ω −

The speed of light is generally denoted by c. When light travels in a transparent material, the speed is decreased 
by a factor µ, which is called as the refractive index of the material.

 speed of light in vaccum
speed of light in the material

µ =

The frequency of visible light varies from about 113800 10 Hz×  to about 117800 10 Hz× .

Colour Wave-length

Red 620-780 nm

Orange 590-620 nm

Yellow 570-590nm
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Colour Wave-length

Green 500-570 nm

Blue 450-500 nm

Violet 380-450 nm

Light of a single wavelength is called monochromatic light. 

Illustration 1: The refractive index of glass is 1.5. Find the speed of light in glass.  (JEE MAIN)

Sol: speed of light in vaccum
speed of light in the material

µ =

Thus, speed of light in glass speed of light in vaccum
=

µ

8 1
8 13.0 10 ms 2.0 10 ms

1.5

−
−×

= = ×

2. HUYGENS’S WAVE THEORY

It has following two basic postulates:

(a) Consider all the points on a primary wave-front to be the sources of light, which emit disturbance known as 
secondary disturbance.

(b) Tangent envelop to all secondary wavelets gives the position of the new wave-front.

Huygens’ Principle may be stated in its most general form as follows:

Various points of an arbitrary surface, when reached by a wave front, become secondary sources of light emitting 
secondary wavelets. The disturbance beyond the surface result from the superposition of these secondary wavelets.

Huygens’ Construction 

Huygens, the Dutch physicist and astronomer of the seventeenth century, gave a beautiful 
geometrical description of wave propagation. We can guess that, he must have seen water 
waves many times in the canals of his native place Holland. A stick placed in water, oscillated 
up and down, becomes a source of waves. Since the surface of water is two dimensional, the 
resulting wave fronts would be circles instead of spheres. At each point on such a circle, the 
water level moves up and down. Huygens’ idea is that we can think of every such oscillating 
point on a wave front as a new source of waves. According to Huygens’ principle, what we 
observe is the result of adding up the waves from all these different sources. These are called 
secondary waves or wavelets. Huygens’ Principle is illustrated in (Figure) as the simple case 
of a plane wave.

(a) At time t=0, we have a wave front 1 1F ,F separates those parts of the medium that are 
undisturbed from those where the wave has already reached.

(b) Each point on 1F acts like a new source and sends out a spherical wave. After a time ‘t’, 
each of these will have radius vt. These spheres are the secondary wavelets.

(c) After a time t, the disturbance would now have reached all points within the region 
covered by all these secondary waves. The boundary of this region is the new wavefront 

2F . Notice that 2F is a surface tangent to all the spheres. It is called the forward envelop 
of these secondary wavelets.

(d) The secondary wavelets from the point 1A on 1F touches 2F  at 2A  . According to Huygens, 1 2A A is a ray. It 
is perpendicular to the wavefronts 1F and 2F and has length vt. This implies that rays are perpendicular to 
wavefronts. Further, the time taken for light to travel between two wavefronts is the same along any ray. In our 
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examples, the speed ‘v’ of the wave has been taken to be the same at all points in the medium. In this case, 
we can say that the distance between two wavefronts is the same measured along any ray.

(e) This geometrical construction can be repeated starting with 2F to get the next wavefront 3F a time t later, and 
so on. This is known as Huygens’ construction.

Huygens’ construction can be understood physically for waves in a material medium, like the surface of water. Each 
oscillating particle can set its neighbors into oscillation, and therefore acts as a secondary source. But what if there 
is no medium, such as for light travelling in vacuum? The mathematical theory, which cannot be given here, shows 
that the same geometrical construction work in this case as well.

3. INTERFERENCE

When two waves of the same frequency move along the same direction in a medium, they superimpose and give 
rise to a phenomena called interference. Points of constructive interference have maximum intensity while points 
of destructive interference have minimum intensity.

3.1 Coherent and Incoherent Sources
Two light sources of light waves are coherent if the initial phase difference between the waves emitted by the 
sources remains constant with time. If it changes randomly with time, the sources are said to be incoherent. Two 
waves produce an interference pattern only if they originate from coherent sources. 

3.2 Intensity and Superposition of Waves
If two waves ( )1 1y A sin t= ω  & ( )2 2y A sin t= ω + θ are superimposed, resultant wave is given by ( )y Rsin t= ω + θ

Where 2 2 2
1 2 1 2R A A 2A A cos= + + φ  or ( ) ( )21 2 1 2I I I 2 I I cos I A= + + φ ∝ and 2

1 2

A sin
tan

A A cos
φ

θ =
+ φ

For maxima, cos 1, 2n n 0,1,2φ = φ = π =

For minima, cos 1, (2n 1) n 1,2,...φ = − φ = − π =

If 1 2 0I I I= = ;  2
1 0I 41 cos

2
φ

= ; 
( )
( )

( )
( )

22
1 21 2max

2 2
min 1 2 1 2

I IA AI
I A A I I

++
= =

− −

Note: Consider two coherent sources 1S  and 2S . Suppose two waves emanating 
from these two sources superimpose at point P. The phase difference between them 

at P is φ (which is constant). If the amplitude due to two individual sources at P is 1A

and 2A , then resultant amplitude at P will be, 2 2
1 2 1 2A A A 2A A cos= + + φ  

Similarly the resultant intensity at P is given by, 1 2 1 2I I I 2 I I cos= + + φ . Here, 1I and 

2I are the intensities due to independent sources. If the sources are incoherent then 
resultant intensity at P is given by, 1 2I I I= +

Illustration 2: Light from two sources, each of same frequency and in same direction, but with intensity in the 
ration 4:1 interfere. Find ratio of maximum to minimum intensity.  (JEE MAIN)

Sol: Interference, amplitudes added and subtracted not the intensity, 1 2A A A= + .
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2

12 2
1 2 2max

min 1 2 1

2

I
1

I I II 2 1 9 : 1
I 2 1I I I

1
I

 
 + +    + = = =    −−     − 
 

3.3 Conditions for Interference
(a) Sources should be coherent i.e. the phase difference between them should be constant. For this, frequency of 

sources should be the same.

(b) The amplitudes of both the waves should be nearly equal so as to obtain bright and dark fingers of maximum 
contrast.

(c) The two sources should be very close to each other.

(d) The two sources of slits should be very narrow otherwise a broad source will be equivalent to a number of 
narrow sources emitting their own overlapping wavelets.

If the two sources are obtained from a single parent source by splitting the light into two narrow sources, they 
form coherent sources which produce sustained interference pattern due to a constant phase difference between 
the waves.

Illustration 3: In a Young’s experiment, the interference pattern is found to have an intensity ratio between the 
bright and dark fringes as 9:1, find out:   (JEE MAIN)

(i) The ratio of intensities

(ii) Amplitude of two interfering waves.

Sol: In Interference, 2A I∝ , 1 2A A A= ± .

 ( )
( )

2

1 2 1 2max
1 2 1 22

min 1 21 2

I I I II 9 9 3; ; ; I I 3 I 3 I
I 1 1 1I II I

+ +
= = = + = −

−−

( )21 1 1 1 1
1 2

2 2 2 2 2

I I a I a2 4 4 22 I 4 I ; ; ; I a , ;
I 1 I 1 a I a 1 1

− = − = = ∝ = = =

Illustration 4: Two coherent monochromatic light beams of intensity I & 4I are superimposed. What is the max & 
min possible intensities in the resulting wave?   (JEE MAIN)

Sol: In Interference, 2A I∝ , 1 2A A A= ± .

 ( ) ( ) ( )2 2 2

max 1 2 2I I I I 4I 3 I 9I= + = + = =

( ) ( )2 2

min 1 2I I I I 4I I= − = − =

3.4 Young’s Double Slit Experiment
The experiment consists of a parallel beam of monochromatic light from slit S which is incident on two narrow 
pinhole or slits 1S and 2S separated by a small distance d. The wavelets emitted from these sources superimpose 
at the screen placed in front of these slits to produce an alternate dark and bright fringe pattern at points on the 
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screen depending upon whether these waves reach with a phase difference φ = (2n – 1)π producing destructive 
interference or 2nφ = π  producing constructive interference respectively. If the screen is placed at a perpendicular 
distance D from the middle point of the slits, the point O on the screen lies at the right bisector of 1S 2S and is 
equidistant from 1S and S2. The intensity at O is maximum. Consider a point P located at a distance nx from O on 
the screen as shown in the figure. The path difference of waves reaching at point P from 2S and 1S  is given by Path 

difference n
2 1

x d
S P S P

D
= − =

1S P XP=

2 2S P S X XP= +

2 1 2S P S P S X dsin⇒ − = = θ

path difference dsin⇒ = θ

As θ  is small nxsin tan { D d}
D

θ ≈ θ = >>

n
2 1

x d
S P S P

D
∴ − =

The point P will be bright or of a maximum intensity when the path difference is an integral multiple of wavelength

or 2n nλ φ = π = λ ; n
2 1

x d
S P S P n

D
∴ − = = λ

The bright fringes are thus observed at distance

1 2 3 n
D 2 D 3 D n Dx ,x ,x ,......, x
d d d d
λ λ λ λ

= = = =

The distance between consecutive bright fringes, 

( )n D D Dn 1
d d d
λ λ λ

β = − − =

The point P will be dark or of minimum intensity when the path 

difference is an odd multiple of half wavelength or ( )2n 1φ − − π ;

n
2 1

x d
S P S P n

D
∴ − = = λ

The bright fringes are thus observed at distances

1 2 3 n
D 2 D 3 D n Dx ,x ,x ,......, x
d d d d
λ λ λ λ

= = = =

The distance between consecutive bright fringes, ( )n D D Dn 1
d d d
λ λ λ

β = − − =

The point P will be dark or of minimum intensity when the path difference is an odd multiple of half wavelength or 

( )2n 1φ = − π ; ( )n
2 1

x d
S P S P 2n 1

D 2
λ

∴ − = = −

Where n is an integer ( )n
Dx 2n 1 .
2d
λ

∴ = −

The dark fringes will be observed at distance 
( )

1 2 3 n

2n 1 DD 3 D 5 Dx ,x ,x ,......., x
2d 2d 2d 2d

− λλ λ λ′ ′ ′ ′= = = =

S
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d

!
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Fringe width: The spacing between any two consecutive bright or two dark fringes is equal and is called the fringe 
width.

The distance between two consecutive dark fringes 
( ) ( )2n 1 D 2n 3 D D

2d 2d d

− λ − λ λ
= β = − =

DFringewidth
d
λ

∴ = β =

If a thin transparent plate of thickness t and refractive index µ is introduced in the path S1P of one of the interfering 
waves, the entire fringes pattern is shifted through a constant distance. The path S1P in air is increased to an air 

path equal to ( )1S P 1 t+ µ −

( ) ( )2 1 2 1The path difference S P S P 1 t S P S P 1 t ∴ δ = − + µ − = − − µ −  ( )nx d
1 t

D
= − µ −

For nth maxima at a distance nx'  ( ) ( )n
n

x .d D1 t n ; x n 1 t
D d

 = − µ − = λ = λ + µ − 

Thus, when a thin transparent plate of thickness t and refractive index µ is introduced in one of the paths of the 

waves, the path difference changes by xd
D

.

( ) ( )xd D1 t; x 1 t
D d

∴ = µ − = µ −

( )D 1 t
The central maxima shifts by a distance equal to .

d

µ −
∴

In Young’s double slit experiment, it is important to note that energy is just redistributed over the surface 
of screen. It is still conserved! More energy is taken by points near bright fringes whereas dark fringes 
have almost no energy.

 B Rajiv Reddy (JEE 2012, AIR 11)

Illustration 5: 1S and 2S are two coherent sources of frequently ‘f’ each. ( )1 2 0θ = θ = ° soundV 330m s=  . Find f 

(i) So that there is constructive interference at ‘P’

(ii) So that there is destructive interference at ‘P’ (JEE MAIN)

Sol:  Path difference for constructive and destructive interference must be λ and 
2
λ  respectively.

For constructive interference, 

K x 2n∆ = π ; 2 2 2nπ
× = π

λ
; 2

n
λ = ; 2V f V f

n
= λ ⇒ = ; 330f n

2
= ×

 
For destructive interference, 

( )K x 2n 1∆ = + π ; ( )2 .2 2n 1π
= + π

λ
; 

( )2n 11
4

+
=

λ
; 

( )330 2n 1Vf
4

× +
= =
λ

Illustration 6: In a Young’s double slit experiment, the separation between the slits is 0.10 mm, the wavelength of 
light used is 600 nm and the interference pattern is observed on a screen 1.0 m away. Find the separation between 
the successive bright fringes.   (JEE MAIN)

S
1

S
2

3m P

4m

Figure 17.4

MASTERJEE CONCEPTS
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Sol: Path difference needs to be λ.

The separation between the successive bright fringes is,
9

3
3

D 1.0m 600 10 m 6.0 10 m 6.0mm
d 0.10 10 m

−
−

−

λ × ×
ω = = = × =

×

Assumptions: 2. Since d<<D, we can assume that intensities at P due to independent sources 1S  and 2S are almost 
equal. or 1 2 0I I I= = (say)

Illustration 7: When a plastic thin film of refractive index 1.45 is placed in the path of one of the interfering waves, 
then the central fringe is displaced through width of five fringes. Find the thickness of the film, if the wavelength of 
light is 5890 A.  (JEE MAIN)

Sol:  Path difference due to introducing of thin film.

 ( ) ( )
0 10

0.45 t
X 1 t 5p

5890 10−
ββ

= µ − ⇒ =
λ ×

  
10

45 589010
t 6.544 10 cm

0.45

−
−×

∴ = = ×

Illustration 8: Laser light of wavelength 630 nm, incident on a pair of slits produces an interference pattern in 
which bright fringes are separated by 8.1 mm. A second light produces an interference pattern in which the bright 
fringes are separated by 7.2 mm. Find the wavelength of the second light.   (JEE ADVANCED)

Sol: The separation between the successive bright fringes, β ∝ λ .

9 3 3
1 1 2630nm 630 10 m; 8.1mm 8.1 10 m; 7.2mm 7.2 10 m− − −λ = = × β = = × β = = ×

3
92 2 2

2 1 2 3
1 1 1

7.2 10; ; 630 10
8.1 10

−
−

−

λ β β ×
= λ = λ λ = × ×

λ β β ×
9 98 630 10 560 10 560nm

9
− −= × × = × =

Illustration 9: In a Young’s double slit experiment, the two slits are illuminated by light of wavelength 5890 
Angstrom and the distance between the fringes obtained on the screen is0.2° . If the whole apparatus is immersed 
in water, the angular fringe width will be: (the refractive index of water is 4 3 ).  (JEE ADVANCED)

Sol:  Angular fringe width, ω ∝ λ .

( ) ( ) ( )a awater water water
a a a water

a a water
d; 0.15

ω ωλ λ
ω = λ ∴ ω ∝ λ ⇒ = ⇒ = ⇒ ω = °

ω λ ω µ λ

Illustration 10: In a YDSE, D=1m, d=1mm and 1 2mmλ =   (JEE ADVANCED)

(i) Find the distance between the first and the central maxima of the screen.

(ii) Find the no. of maxima and minima obtained on the screen. 

Sol: Here, sinθ <<1, not applicable. Hence dy
P dtan

D
∆ = θ = is used.

(i) D>>d Hence P dsin∆ = θ ; d 2,=
λ

Clearly, dn 2<< =
λ

 is not possible for any value of n.

Hence dy
p

D
∆ =  cannot be used.

For 1st maxima, p dsin∆ = θ = λ
1sin ; 30

d 2
λ

⇒ θ = = ⇒ θ = °  
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Hence, 1y Dtan meter
3

= θ =

(ii) Maximum path difference

maxP d 1mm∆ = =

max
dHighest order maxima, n 2
 

⇒ = = λ 

And highest order minima min
d 1n 2

2
 

= + = λ 

Total no. of maxima max2n 1 5∗= + = ( )central maxima∗

Total no. of minima= min2n 4= =

Illustration 11: Monochromatic light of wavelength 5000 A°  is used in a Y.D.S.E., with slit-width, d=1mm, distance 

between screen and slits, D is 1m. If the intensities at the two slits are, 1 0 2 0,I 4I , I I= = find   (JEE ADVANCED)

(i) Fringe width β

(ii) Distance of 5th minima from the central maxima on the screen.

(iii) Intensity at 1y mm
3

=

(iv) Distance of the 1000th maxima from the central maxima on the screen.

(v) Distance of the 5000th maxima from the central maxima on the screen.  

Sol: Refer to the formulas:-

(i) 
10

3

D 5000 10 1 0.5mm
d 1 10

−

−

λ × ×
β = = =

×

(ii) ( ) Dy 2n 1 ,n 5
2d
λ

= − =  y 2.25mm⇒ =

(iii) 1At y mm,y D
3

= <<  Hence d.y
p

D
∆ =

dy2 4p 2
D 3

π π
∆φ = ∆ = π =

λ λ

Now resultant intensity

1 2 1 2I I I 2 I I cos= + + ∆φ ; 2
0 0 0 0 0 0

44I I 2 4I cos 5I 4I cos 3I
3
π

+ + ∆φ = + =

(iv) 
3

6

d 10 2000
0.5 10

−

−
= =

λ ×

n=1000 is not <<2000

Hence now p∆ =d sin θ must be used

Hence, d sin n 1000θ = λ = λ  1sin 1000
d 2
λ

⇒ θ = =  30⇒θ = °

S
1

S
2

!

D
d

y

Figure 17.5
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Y=D tan 1 meter
3

θ =

(v) Highest order maxima max
dn 2000
 

= = λ 
Hence, n=5000 is not possible

Intensity variation on screen: If 0I is the intensity 
of light beam coming from each slit, the resultant 
intensity at a point where they have a phase 
difference of φ is

( )2
0

2 dsin
I 4I cos ,where

2

π θφ
= φ =

λ
 

For interference in reflected rays

When 2 1 3;,µ > µ µ condition for

(i) Maxima: 2
12t cosr n , n 1,2,....
2

 
µ = − λ = 

 
 

(ii) Minima: 22t cosr n , n 1,2,....µ = λ =  

When 2µ is in between 1µ & 2µ , condition for

(i) Maxima: 22t cosr n , n 1,2,....µ = λ =

(ii) Minima: 2
12t cosr n , n 1,2,....
2

 
µ = − λ = 

 
For interference in transmitted rays, 3 and 4 conditions are interchanged for maxima and minima in both cases  
of 2µ .

Illustration 12: When a plastic thin film of refractive index 1.45 is placed in the path of one of the interfering waves 
then the central fringe is displaced through width of five fringes. Find the thickness of the film, if the wavelength of 
light is 5890 Å.  (JEE MAIN)

Sol: Path difference due to introducing of thin film.

 ( ) ( )
0 10

0.45 t
X 1 t 5p

5890 10−
ββ

∴ = µ − ⇒ =
λ ×

;  
10

45 5890 10
t 6.544 10 cm

0.45

−
−×

∴ = = ×

Useful tips: If two slits have unequal sizes (they correspond to intensity). The intensity of the resultant is 

( ) ( ) ( )2 2

1 2 1 2I I I 2 I I cos= + + φ

( ) ( )1 2 1 2 1 2 1 2I I I 2 I I cos k S S 2 S S cos= + + φ = + + φ

Where 1S  & 2S  is the size of slits

Coherence length, 
2

cohI λ
=
∆λ

; Coherence radius 
2

coh
λ

ρ =
φ

 
2
φ

β =

Fringe width

Minimum intensity

O

4l
0

Maximum intensity

Figure 17.6
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3.5 Optical Path
Actual distance travelled by light in a medium is called geometrical path ( )x∆ . Consider a light wave given by the 
equation ( )0E E sin t kx= ω − + φ

If the light travels by x∆ , its phase changes byk x x
v
ω

∆ = ∆ , where ω , the frequency of light does not depend on the 

medium, but v, the speed of light depends on the medium as cv .=
µ

Consequently, change in phase ( )wk x x
c

∆φ = ∆ = µ∆

It is clear that a wave travelling a distance x∆ in a medium of refractive index µ suffers the same phase change as 
when it travels a distance xµ∆ in vacuum i.e. a path length of x∆ in medium of refractive index µ is equivalent to a 
path length of xµ∆ in vacuum.

The quantity xµ∆ is called the optical path length of light, optx∆ . And in terms of optical path length, phase 

difference would be given by. opt opt
0

2x x
c
ω π

∆φ = ∆ = ∆
λ

where 0λ =wavelength of light in vacuum.

However in terms of the geometrical path length x∆ ,

( ) 2x x
c
ω π

∆φ = µ∆ = ∆
λ

Where λ= wavelength of light in the medium 0 .
 λ
λ =  µ 

Optical path must always be linked to phase of wave, so that it’s more convincing and useful. Only 
learning manually will make it confusing and annoying.

If a material of thickness t interrupts the path of light and distance measured from position of an end of 
material, then the phase of wave which is found at a distance x(<t) through the material will be same to 
phase at distance (mu), if there was no material.

Fringe width (w) is the distance between two successive maximas or minimas. It is given by,
Dw ; or w
d
λ

= ∝ λ .Two conclusions can be drawn from this relation:-

(i)    If a YDSE apparatus is immersed in a liquid of refractive indexµ , then wavelength of light and hence, 

fringe width decreases µ times.

(ii)    If white light is used in place of a monochromatic light then coloured fringes are obtained on the 
screen with red fringes of larger size than that of violet, because red violetλ > λ .

 Vaibhav Gupta (JEE 2009, AIR 54)

Illustration 13: The wavelength of light coming from a sodium source is 589 nm. What will be its wavelength in 
water? Refractive index of water =1.33.   (JEE MAIN)

Sol: The wavelength in water is 0λ = λ µ , where 0λ is the wavelength in vacuum and µ is the refractive index of 

water. Thu 589 443nm
1.33

λ = =

MASTERJEE CONCEPTS
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3.6 Interference from Thin Films
Interference effects are commonly observed in thin films, such as thin layers of oil 
on water or the thin surface of a soap bubble. The various colors observed when 
white light is incident on such films result from the interference of waves reflected 
from the two surfaces of the film. Consider a film of uniform thickness t and index 
of refraction µ as shown in the figure. Let us assume that the rays travelling in air are 
nearly normal to the two surfaces of the film. To determine whether the reflected 
rays interfere constructively or destructively, we first note the following facts. 

(i) The wavelength of light in a medium whose refractive index is µ  is, µ
λ

λ =
µWhere λ is the wavelength of light in vacuum (on air)

(ii) If a wave is reflected from a denser medium, it undergoes a phase change of 
180° . Let us apply these rules to the film shown in figure. The path difference 

between the two rays. 1 and 2 is 2t while the phase difference between them 

is 180° . Hence, condition of constructive interference will be, ( )2t 2n 1
2
λµ

= −  

or, 12 t n
2

 
µ = − λ 

 
 as µ

λ
λ =

µ

Similarly, condition of destructive interference will be2 t nµ = λ ; n=0, 1, 2, …

Illustration 14: Find the minimum thickness of a film which will strongly reflect the light of wavelength 589 nm. 
The refractive index of the material of the film is 1.25.   (JEE MAIN)

Sol: Path difference due to introducing of thin film.

For strong reflection, the least optical path difference introduced by the film should be 2λ . The optical path 
difference between the waves reflected from the two surface of the film is 2 dµ . 

Thus, for strong reflection, 2 d 2µ = λ  or, 589nmd 118nm.
4 4 1.25
λ

= = =
µ ×

3.7 YDSE with Glass Slab 

Path difference produced by a slab

Consider two light rays 1 and 2 moving in air parallel to each other. If a slab 
of refractive index µ and thickness t is inserted between the path of one of 
the rays then a path difference ( )x 1 t∆ = µ −  is produced among them. This 
can be shown as under,

Speed of light in air = c

Speed of light in medium c
=
µ

 Time taken by ray 1 to cross the slab, 

1
t tt

c / c
µ

= =
µ

and time taken by ray 2 cross the same thickness t in air will 

be, 2 1 2
tt as t t
c

= >  

Difference in time ( )1 2
tt t t 1
c

∆ = − = µ −

Optical path length: Now we can show that a thickness t in a medium of refractive index µ is equivalent to a length 
tµ in vacuum (or air). This is called optical path length. Thus,

Optical path length= tµ
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Shifting of fringes: Suppose a glass slab of thickness t and refractive 
index µ is inserted onto the path of the ray emanating from source 1S .  

Then, the whole fringe pattern shifts upwards by a distance
( )1 tD

d

µ −

. This can be shown as under Geometric path difference between 2S P and 

1S P is, 1 2 1
yd

x S P S P
D

∆ = − =  Path difference produced by the glass slab 

( )2x 1 t∆ = µ −

Note: Due to the glass slab, path of ray 1 gets increased by 2x∆ . Therefore, 

net path difference between the two rays is,

1 2x x x∆ = ∆ − ∆  or,  ( )yd
x 1 t

D
∆ = − µ −

For thn maxima on upper side, or, ( )yd 1 t n
D

− µ − = λ ;

( )1 tDn Dy
d d

µ −λ
∴ = +

Earlier, it was n D
d
λ ; Shift 

( )1 tD

d

µ −
=

Following three points are important with regard to Eq. above

(a) Shift is independent of n, (the order of the fringe), i.e., 

Shift of zero order maximum = shift of 7th order maximum 

Shift of 5th order maximum = shift of 9th order minimum and so on.

(b) Shift in independent of λ , i.e., if white light is used then, 

Shift of red colour fringes = shift of violet colour fringes.

(c) Number of fringes shifted = shift
fringes width

 
( ) ( )1 tD d 1 t

D d

µ − µ −
= =

λ λ

These numbers are inversely proportional to λ . This is because the shift is the same for all colours but the fringe 
width of the colour having smaller value of λ is small, so more number of fringes of this colour will shift.

Illustration 15: In a YDSE with d=1mm and D=1m, slabs of ( ) ( )t 1 m, 3 and t 0.5 m, 2= µ µ = = µ µ =  are introduced 
in front of the upper slit and the lower slit respectively. Find the shift in the fringes pattern.  (JEE MAIN)

Sol: Path difference due to introducing of thin film.

Optical path for light coming from upper slit 1S is ( )1 2S P 1 m 2 1 S P 0.5 m+ µ − = + µ

Similarly optical path for light coming from 2S is ( )2 2S P 0.5 m 2 1 S P 0.5 m+ µ − = + µ

Path difference ( ) ( )2 1p S P 0.5 m S P 2 m∆ = + µ − + µ ( )2 1S P S P 1.5 m= − − µ
yd

1.5 m
D

= − µ

For central bright p 0∆ =  1.5 my 1m 1.5mm.
1mm
µ

⇒ = × =

The whole pattern is shifted by 1.5mm upwards. 
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Illustration 16: Bichromatic light is used in YDSE having wavelength  
λ1 = 400 mm and λ2 = 700 mm. Find minimum order of λ1 which overlaps with 
λ2.  (JEE ADVANCED)

Sol: Fringe width depends on wavelength.

Let 1n bright find of 1λ overlaps with 2λ . Then, 1 1 2 2n D n D
d d
λ λ

=  Or, 

1 2

2 1

n 700 7
n 400 4

λ
= = =
λ

.
 
The ratio 1

2

n 7
n 4

=
 
implies that 7th bright fringes of 1λ  

will overlap with 4th bright fringes of 2λ . Similarly 14th of 1λ will overlap with 

8th of 2λ and so on.

So the minimum order of 1λ which overlaps with 2λ is 7. 

Illustration 17: In YDSE, find the thickness of a glass slab ( )1.5µ = which should be placed before the upper slit 1S
so that the central maximum now lies at a point where 5th bright fringe was lying earlier (before inserting the slab). 
Wavelength of light used is 5000 Å.  (JEE MAIN)

Sol: Path difference due to introducing of thin film.

According to the question, Shift = 5 (fringe width)

( )1 tD 5 D
d d

µ − λ
∴ =

5 25000y
1 1.5 1
λ

∴ = =
µ − −

=50,000 Å 

Tip: If the light reaching P is direct (not reflected) from two sources then P will be a bright fringe if the path 
difference n= λ

If the light reaching P after reflection forms a bright fringe (at P) then path difference ( )2n 1
2
λ

= +  →  because the 

reflection causes an additional path difference of 
2
λ

 
(or phase difference = π rad.) If the interference occurs due to 

reflected light, central fringe (or ring in Newton’s rings) will be dark. If the interference occurs due to transmitted 

light, central fringe (or ring in Newton’s rings) will be bright.

3.8 YDSE with Oblique Incidence
In YDSE, ray is incident on the slit at an inclination of 0θ to the axis of symmetry of the experimental set-up for 
points above the central point on the screen, (say for 1P )

( )0 2 1 1 1p dsin S P S P∆ = θ + −   

Figure 17.12

Screen

S
1

S
2

P
1

P
2

!2
O

dsin
4

!

O’

!

3

!

1
!

0

0 1p dsin dsin⇒ ∆ = θ + θ  (if d<<D)

and for points below O on the screen, (say for 2P )

( )0 2 2 1 2p dsin S P S P∆ = θ + −  ( )0 1 2 2 2dsin S P S P= θ − −

0 2p dsin dsin⇒ ∆ = θ − θ  (if d<<D)

We obtain central maxima at a point where, p∆ =0.

( )0 2d sin d sin 0θ − θ =  or, 2 0θ = θ .
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This corresponds to the point O’ in the diagram. Hence, we finally have the path difference as

( )
( )
( )

0

0

d sin sin for points above O

p d sin sin for points between O & O'

d sin sin for points below O'ο

 θ + θ −
∆ = θ − θ −
 θ − θ −

Illustration 18: In a YDSE with D=1m, d=1mm, light of wavelength 500 nm is incident at an angle of 0.57°  w.r.t. 
the axis of symmetry of the experimental set up. If the centre of symmetry of screen is O as shown, find: 

(i) The position of central maxima.

(ii) Intensity at point O in terms of intensity of central maxima 0I .

(iii) Number of maxima lying between O and the central maxima.   (JEE MAIN)

Sol: Path difference at central maxima =0.

(i) θ = θ0 = 0.57° ⇒ Dtanθ = ‒Dθ = ‒1 meter 
0.57y Dtan D 1meter rad
57

 
⇒ = − θ = − θ = − ×  

 
 y 1cm⇒ = −

(ii) For point 0, θ =0

Hence, ( )2
0 0p dsin d 1mm 10 rad−∆ = θ θ = ×  ( )10,000nm 20 500nm= = ×

Hence point O correspond to 20th maxima 0intensity at O=I⇒

(iii) 19 maxima lie between central maxima and O, excluding maxima at O and central maxima.

4. DIFFRACTION

The phenomenon of bending of light around the corners of an obstacle or 
an aperture into the region of the geometrical shadow of the obstacle is 
called diffraction of light. The diffraction of light is more pronounced when 
the dimension of the obstacle/aperture is comparable to the wavelength of 
the wave. 

4.1 Diffraction of Light Due to Single Slit
Diverging light from monochromatic source S is made parallel after refraction 
through convex lens 1L . The refracted light from 1L is propagated in the form 
of plane wave front WW’. The plane wave front WW’ is incident on the slit 
AB of width ‘d’. According to Huygens’ Principle, each point of slit AB acts as 
a source of secondary disturbance of wavelets. 

Path difference: To find the path difference between the secondary wavelets originating from corresponding 
points A and B of the plane wave front, draw AN perpendicular on BB’. The path difference between these wavelets 
originating from A and B is BN.
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From BNBAN, sin
AB

∆ = θ  Or,   BN ABsin= θ Path difference, BN=d sin d∴ θ θ  ( )is smallθ

(a) For Minima: If the path difference is equal to one wavelength i.e., BN= d sin ,θ = λ  position P will be of 
minimum intensity. Hence, for first minima, d 1sinθ = λ

 Or 1sin dθ = λ  …(i)

 Or  1 dθ = λ  ( )1 is very smallθ  …(ii)

 Similarly, if BN= 2λ ,

 Thus, for second minima, 2dsin 2θ = λ  Or 2sin 2 dθ = λ ; 2 2sinθ = θ  Or 2 2 dθ = λ

 In general, for minima, mdsin mθ = λ  Or  msin m dθ = λ

 Since mθ is small, so sin mθ = mθ  m
m
d
λ

∴ θ =  (here θ  we use is in radians)  

 Where, mθ is the angle giving direction of the thm order minima and m=1,2,3,…. Is an integer.

Note: Condition for minima → Path difference between two waves should be mλ , where m is an integer.

(b)  For secondary maxima: If path difference, BN= d sin θ is an odd multiple of 2λ ,

  i.e. m
2m 1dsin

2
 +

θ = λ 
 

 or m
2m 1sin

2 d
 + λ

θ =  
 

  Since mθ is small, so m msinθ = θ ; m
2m 1

2 d
 + λ

∴ θ =  
 

 …(iv)

  M=1 ,2, 3, …. Is an integer

 Let f be the focal length of lens 2L and the distance of first minima  

on either side of the central maxima be x. Then, xtan
f

θ =

 Since the lens 2L is very close to the slit, so f=D 

 

xtan
d

∴ θ = Since θ is very small, so tan sinθ ≈ θ  xsin
d

∴ θ =    …(i)

 Also, for first minima, dsin θ = λ or sin y
d

θ =   …(ii)

-3! -2! -! -! 2! 3!
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-2" -"

d d d
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From eqns. (i) and (ii), we have x
D d

λ
=  or Dx

d
λ

=   …(iii)

This is the distance of first minima on either side from the centre of the central maximum. Width of central maximum 

is given by: 2 D2x
d
λ

∴ =

Diffraction pattern due to a single slit consists of a central maximum flanked by alternate minima and secondary 
maxima is shown in figure.

Note: That sin 0θ =  corresponds to central maxima while sinθ = π , corresponds to first minima.

Diffraction grating: It consists of a large number of equally spaced parallel slits. If light is incident normally on a 
transmission grating, the direction of principal maxima is given by dsin nθ = λ

Here d is the distance between two consecutive slits and is called the grating element.

N=1, 2, 3,…. is the order of principal maximas.

Resolving power of the diffraction grating: The diffraction grating is most useful for measuring wavelengths 
accurately. Like the prism, the diffraction grating can be used to disperse a spectrum into its wavelength components. 
Of the two devices, the grating is the more precise if one wants to distinguish two closely spaced wavelengths. 
For two nearly equal wavelengths 1λ and 2λ , between which a diffraction grating can just barely distinguish, the 
resolving power R of the grating is defined as 

2 1
R λ λ
= =
λ − λ ∆λ

 where, ( )1 2 2λ = λ + λ and 2 1.∆λ = λ − λ

Illustration 19: A parallel beam of monochromatic light of wavelength 450 nm passes through a long slit of width 
0.2 mm. Find the angular divergence in which most of the light is diffracted.  (JEE MAIN)

Sol: Most of the light is diffracted between the two first order minima. These minima occur at angles given by 
bsinθ = ±λ   

Or, sin bθ = ±λ  
9

3
3

450 10 m 2.25 10
0.2 10 m

−
−

−

×
= ± = ± ×

×
 Or,  32.25 10 rad−θ = ± ×

The angular divergence 34.5 10 rad−= × .

4.2 Diffraction by a Circular Aperture
Mathematical analysis shows that the first dark ring is formed by the light diffracted from the hole at an angle θ

with the axis, where sin 1.22
b
λ

θ =  Here, λ is the wavelength of the light used and b is the diameter of the hole. If 

the screen is at a distance D(D>>b) from the hole, the radius of the first dark ring is DR 1.22
b
λ

=

b

D

(a)

(b)
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b

D

(a)

(b)

Figure 17.17

If the light transmitted by the hole is converged by a converging lens at the screen placed at the focal plane of this 

lens, the radius of the first dark ring is fR 1.22
b
λ

=

As most of the light coming from the hole is concentrated within the first dark ring, this radius is also called the 
radius of the diffraction disc.

Illustration 20: A beam of light of wavelength 590nm is focused by a converging lens of diameter 10.0 cm at a 
distance of 20 cm from it. Find the diameter of the disc image formed.  (JEE MAIN)

Sol: The angular radius of the central bright disc in a diffraction pattern from circular aperture is given by 
1.22sin
b
λ

θ =  
9

5
2

1.22 590 10 m 0.7 10 rad.
10.0 10 m

−
−

−

× ×
= = ×

×

The radius of the bright disc is 5 40.7 10 20cm 1.4 10 cm− −× × = ×

The diameter of the disc image 42.8 10 cm−= ×

4.3 Diffraction of X-Rays by Crystals
The arrangement of atoms in a crystal of NaCl is shown 
in the above figure. Each unit cell is a cube of length 
of edge a. If an incident x-ray beam makes an angle θ
with one of the planes, the beam can be reflected from 
both the planes. However, the beam reflected from the 
lower plane travels farther than the beam reflected 
from the upper plane. 

The effective path difference is 2d sinθ . The two 
beams reinforce each other (constructive interference) 
when this path difference is equal to some integer 
multiple of λ . The same is true for reflection from the 
entire family of parallel planes. Hence, the condition 
for constructive interference (maxima in the reflected 
beam) is 2dsin mθ = λ  where, m=1, 2, 3,…is an integer. 

This condition is known as Bragg’s Law, after W.L. Bragg 
(1890-1971), who first derived the relationship. If the 
wavelength and diffraction angle are measured, the 
above equation can be used to calculate the spacing 
between atomic planes. 

Note: Each fringe in Young’s Double Split Experiment 
has equal intensity while in diffraction, the intensity 
falls as the fringe order increases.

Collimator

Crystal

X-rays

tube

Photographic

film

X-rays

Figure 17.18

Figure 17.19

Reflected

beam

Incident

beam

Upper plane

Lower plane

!

d sin !

!

d



17.18  |   Wave Optics

Important Points: 

(a) Types of diffraction: The diffraction phenomenon is divided into two types viz. Fresnel diffraction and 
Fraunhofer diffraction. In the first type, either the source or the screen or both are at a finite distance from 
the diffracting device (obstacle of aperture). In the second type, both the source and screen are effectively at 
an infinite distance from the diffracting device. Fraunhofer diffraction is a particular limiting case of Fresnel 
diffraction.

(b) Difference between interference and diffraction: Both interference and diffraction are the results of 
superposition of waves, so they are often present simultaneously, as in Young’s double slit experiment. 
However interference is the result of superposition of waves from two different wave fronts while diffraction 
results due to superposition of wavelets from different points of the same wave front.

X-ray diffraction is used in crystals to find inter-atomic distance owing to the fact that wavelengths of 
x-rays are of order of inter-atomic distance, the required condition for diffraction.  

Nivvedan (JEE 2009, AIR 113)

5. RESOLVING POWER OF OPTICAL INSTRUMENTS

When the two images cannot be distinguished, they are said to be un-resolved. If the images are well distinguished. 
They are said to be well resolved. On the other hand, if the images are just distinguished, they are said to be just 
resolved. 

D

! !

f

(a)

Figure 17.20

Rayleigh Criterion: According to Rayleigh, two objects or points are just resolved if the position of the central 
maximum of the image of one object coincides with the first minimum of the image of the other object as shown 
in figure (a).

5.1 Limit of Resolution
The minimum distance of separation between two points so that they can be seen as separate (or just resolved) by 
the optical instrument is known as its limit of resolution. Diffraction of light limits the ability of optical instruments.

MASTERJEE CONCEPTS
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Resolving Power: The ability of an optical instrument to form distinctly separate images of the two 
closely placed points or objects is called its resolving power. Resolving power is also defined as reciprocal 
of the limit of resolution, 

1R.P.
Limit of resolution

=

Smaller the limit of resolution of an optical instrument, larger is its resolving power and vice-versa.

Resolving Power of Eyes: Since eye lens is a converging lens, the limit of resolution of the human eye 

is that of the objective lens of a telescope i.e. limit of resolution of the eye, 1.22
D
γ

α =

Where, D= diameter of the pupil of the eye.
1 DResolving power of the eye=

1.22
=

α λ

Resolving power of an astronomical telescope: Resolving power of a telescope,
1R.P.

Limit of resolution
=  or DR.P.

1.22
=

λ

 Chinmay S Purandare (JEE 2012, AIR 698)

Illustration 21: A star is seen through a telescope having objective lens diameter as 203.2cm. If the wavelength of 
light coming from a star is 6600 Å, find (i) the limit of resolution of the telescope and (ii) the resolving power of the 
telescope.   (JEE MAIN)

Sol: 1 DResolving power of the eye=
1.22

=
α λ

Here, D=203.2cm and 8 5 Å 6600 10 cm6600 6.6 10 cm− −= × == ×λ

(i) Limit of resolution of telescope, 1.22
D
λ

α =  
5

71.22 6.6 10 3.96 10 rad
203.2

−
−× ×

= = ×

(ii) Resolving power of telescope, 6
7

1 D 1 2.53 10
1.22 3.96 10−

= = = ×
α λ ×

Resolving power of a microscope: Resolving power of a microscope=
min

1
d

i.e.

microscope
2nsinR.P.
1.22

β
=

λ

6. SCATTERING OF LIGHT

Scattering of light is a phenomenon in which a part of a parallel beam of light appears in directions other than the 
incident radiation when passed through a gas. 

Process: Absorption of light by gas molecules followed by its re-radiation in different directions. 

The strength of scattering depends on the following:

(a) Loss of energy in the light beam as it passes through the gas

(b) Wavelength of light

(c) Size of the particles that cause scattering

MASTERJEE CONCEPTS
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Key point: If these particles are smaller than the wavelength, the scattering is proportional to 41 λ . This is known 
as Rayleigh’s law of scattering. Thus, red is scattered the least and violet is scattered the most. This is why, red 
signals are used to indicate dangers. Such a signal transmit to large distance without an appreciable loss due to 
scattering.

Practical example of scattering: The blue color of the sky is caused by the scattering of sunlight by the molecules 
in the atmosphere. This scattering, called Rayleigh scattering, is more effective at short wavelengths (the blue 
end of the visible spectrum). Therefore, the light scattered down to the earth at a large angle with respect to the 
direction of the sun’s light, is predominantly in the blue end of the spectrum.

7. POLARIZATION OF LIGHT

The process of splitting of light into two directions is known as polarization.

y

Direction of

propagation of light

Figure 17.21

Phenomenon of polarization: The phenomenon of restricting the vibrations of a light vector of the electric field 
vector in a particular direction in a plane perpendicular to the direction of propagation of light is called polarization 
of light. Tourmaline crystal is used to polarize the light and hence it is called polarizer. 
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7.1 Unpolarized Light
(a) An ordinary beam of light consists of a large number of waves emitted by the atoms or molecules of the 

light source. Each atom produces a wave with its own orientation of electric vector E. However, because all 
directions are equally probable, the resulting electromagnetic wave is a superposition of waves produced by 
individual atomic sources. This wave is called as an unpolarized light wave. 

(b) All the vibrations of an unpolarized light at a given instant can be resolved into two mutually perpendicular 
directions and hence an unpolarized light is equivalent to superposition of two mutually perpendicular 
identical plane polarized lights.

7.2 Plane Polarized Light 
(a) If somehow we confine the vibrations of electric field vector in one direction perpendicular to the direction 

of wave motion of propagation of wave, the light is said to be plane polarized and the plane containing the 
direction of vibration and wave motion is called the plane of polarization.

(b) If an unpolarised light is converted into plane polarized light, its intensity reduces to half.

(c) Polarization is a proof of the wave nature of light.

Partially polarized light: If in case of unpolarised light, electric field vector in some plane is either more or less 
than in its perpendicular plane, the light is said to be partially polarized.

7.3 Polaroids
A polaroid is a device used to produce plane polarized light. The direction 
perpendicular to the direction of the alignment of the molecules of the 
Polaroid is known as pass-axis or the polarizing direction of the Polaroid.

Note: A Polaroid used to examine the polarized light is known as analyzer. 

7.4 Malus’ Law
This law states that the intensity of the polarised light transmitted through 
the analyser varies as the square of the cosine of the angle between the plane 
of transmission of the analyser and the plane of the polariser. Resolve E into 

two components: We know, intensity ( )2Amplitude∝  

∴ Intensity of the transmitted light through the analyser is given by

( )2 2 2I Ecos or I kE cosα θ = θ ; 

But 2
0kE I (intensity of the incident polarised light)=

2
0I I cos= θ  Or 2I cos∝ θ  which is Malus Law.

Plane polarized light is used for chemical purposes in measuring optical rotations of various chemical 
compounds. It can also be used for stating the difference in enantiomeric compounds.

Nitin Chandrol (JEE 2012, AIR 134)

Figure 17.23
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7.5 BREWSTER’S LAW
According to this law, the refractive index of the refractive medium (n) is numerically equal to the tangent of the 
angle of polarization ( )BI . i.e. Bn tanI=

Illustration 22: What is the polarizing angle of a medium of refractive index 1.732? (JEE MAIN)

Sol: As per Brewster’s law, Bn tani=   or  1 1
Bi tan n tan 1.732 60− −= = = °

PROBLEM-SOLVING TACTICS
 1. Most of the questions in JEE are related to Young’s Double slit experiment with minor variations. For any such 

problem, drawing a rough figure and writing down the given parameters is a good idea before solving the 
question.

 2. Wave optics has a lot of derivations. It is advisable to remember the end results for faster problem solving.

 3. Use the concept of optical path carefully and check for phase relations.

 4. Only direct formulae related questions are asked from sections of diffraction, polarizations and scattering so 
these formulae must be learnt. 

FORMULAE SHEET

S. No. Term Description

1 Wave front It is the locus of points in the medium which at any instant are vibrating in 
the same phase.

2 Huygens’ Principle 1 Each point on the given primary wave front acts as a source of 
secondary wavelets spreading out disturbance in all direction.

2 The tangential plane to these secondary wavelets constitutes the 
new wave front.

3 Interference It is the phenomenon of non-uniform distribution of energy in the 
medium due to superposition of two light waves.

4 Condition of maximum intensity 2nφ = π or x n= λ , where n=0,1,2,3,….

6 Condition of minimum intensity ( )2n 1φ = + πor ( )x 2n 1 y 2= + where n=0,1,2,3…

7 Ratio of maximum and minimum 
intensity ( )

( )

2
1 2max

2
min 1 2

a aI
I a a

+
=

−

8 Distance of nth bright fringe from 
centre of the screen n

nDy
d
λ

= , 

where d is the separation distance between two coherent sources of light, 
D is the distance between screen and slit, λ is the wavelength used.
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S. No. Term Description

9 Angular position of nth bright 
fringe n

n
y n
D d

λ
θ = =

10 Distance of nth dark fringes from 
centre of the screen

( )
n

2n 1 D
y

2d

+ λ
′ =

11 Angular position of nth dark fringe ( )n
n

2n 1y
D 2d

+ λ′
′θ = =

12 Fringe width D
d
λ

β =

Diffraction and polarization of light

S. No. Term Description

1 Diffraction It is the phenomenon of bending of light waves round the sharp corners 
and spreading into the regions of the geometrical shadow of the object.

2 Single slit diffraction Condition for dark fringes is nsin
a
λ

θ = where n 1, 2, 3, 4.....,= ± ± ± ± a is 

the width of the slit and θ is the angle of diffraction. Condition for bright 

fringes is 
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3 Width of central maximum is
0
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θ = , where D is the distance between the slit and the screen.

4 Diffraction grating The arrangement of large number of narrow rectangular slits of equal 
width placed side by side parallel to each other. The condition for maxima 
in the interference pattern at the angle θ  is dsin nθ = λ where n=0, 1, 2, 
3, 4…..

6 Resolving power of the grating For nearly two equal wavelengths 1λ and 2λ between which a diffraction 

grating can just barely distinguish, resolving power is 
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where ( )1 2 2λ = λ + λ

7 Diffraction of X-Rays by crystals The condition for constructive interference is 2dsin nθ = λ

8 Polarisation It is the phenomenon due to which vibrations of light are restricted in a 
particular plane.

9 Brewster’s law tanµ = p where µ is refractive index of medium and p is the angle of 
polarisation.

10 Law of Malus 2
0I I cos= θwhere I is the intensity of emergent light from analyser, 0I is 

the intensity of incident plane polarised light and θ is the angle between 
planes of transmission of the analyser and the polarizer.


